Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 181-191, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597078

RESUMO

OBJECTIVES: To explore the mechanism of ginseng in the treatment of periodontitis based on network pharmacology and molecular docking technology. METHODS: Potential targets of ginseng and periodontitis were obtained through various databases. The intersection targets of ginseng and periodontitis were obtained by using VENNY, the protein-protein interaction network relationship diagram was formed on the STRING platform, the core target diagram was formed by Cytoscape software, and the ginseng-active ingredient-target network diagram was constructed. The selected targets were screened for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The core targets of ginseng's active ingredients in treating periodontitis were analyzed by molecular docking technique. RESULTS: The 22 ginseng's active ingredients, 591 potential targets of ginseng's active ingredients, 2 249 periodontitis gene targets, and 145 ginseng-periodontitis intersection targets were analyzed. Ginseng had strong binding activity on core targets such as vascular endothelial growth factor A and epidermal growth factor receptor, as well as hypoxia induced-factor 1 (HIF-1) signaling pathway and phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling pathway. CONCLUSIONS: Ginseng and its active components can regulate several signaling pathways such as HIF-1 and PI3K-Akt, thereby indicating that ginseng may play a role in treating periodontitis through multiple pathways.


Assuntos
Medicamentos de Ervas Chinesas , Panax , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Hipóxia
2.
J Ethnopharmacol ; 330: 118211, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636580

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qilong capsule (QC) is developed from the traditional Chinese medicine formula Buyang Huanwu Decoction, which has been clinically used to invigorate Qi and promote blood circulation to eliminate blood stasis. Myocardial ischemia‒reperfusion injury (MIRI) can be attributed to Qi deficiency and blood stasis. However, the effects of QC on MIRI remain unclear. AIM OF THE STUDY: This study aimed to investigate the protective effect and possible mechanism of QC on platelet function in MIRI rats. MATERIALS AND METHODS: The left anterior descending artery of adult Sprague‒Dawley rats was ligated for 30 min and then reperfused for 120 min with or without QC treatment. Then, the whole blood viscosity, plasma viscosity, coagulation, platelet adhesion rate, platelet aggregation, and platelet release factors were evaluated. Platelet CD36 and its downstream signaling pathway-related proteins were detected by western blotting. Furthermore, the active components of QC and the molecular mechanism by which QC regulates platelet function were assessed via molecular docking, platelet aggregation tests in vitro and BLI analysis. RESULTS: We found that QC significantly reduced the whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation induced by ADP or AA in rats with MIRI. The inhibition of platelet activation by QC was associated with reduced levels of ß-TG, PF-4, P-selectin and PAF. Mechanistically, QC effectively attenuated the expression of platelet CD36 and thus inhibited the activation of Src, ERK5, and p38. The active components of QC apparently suppressed platelet aggregation in vitro and regulated the CD36 signaling pathway. CONCLUSIONS: QC improves MIRI-induced hemorheological disorders, which might be partly attributed to the inhibition of platelet activation via CD36-mediated platelet signaling pathways.

3.
Front Med (Lausanne) ; 11: 1384500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638937

RESUMO

The repair mechanism for corneal epithelial cell injuries encompasses migration, proliferation, and differentiation of corneal epithelial cells, and extracellular matrix remodeling of the stromal structural integrity. Furthermore, it involves the consequential impact of corneal limbal stem cells (LSCs). In recent years, as our comprehension of the mediating mechanisms underlying corneal epithelial injury repair has advanced, it has become increasingly apparent that growth factors play a pivotal role in this intricate process. These growth factors actively contribute to the restoration of corneal epithelial injuries by orchestrating responses and facilitating specific interactions at targeted sites. This article systematically summarizes the role of growth factors in corneal epithelial cell injury repair by searching relevant literature in recent years, and explores the limitations of current literature search, providing a certain scientific basis for subsequent basic research and clinical applications.

4.
Curr Eye Res ; : 1-8, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616539

RESUMO

PURPOSE: This study aims to elucidate the longitudinal refractive and ocular biometric alterations in preschool children with high hyperopia who underwent early interventions. METHODS: We conducted a retrospective analysis of preschool children diagnosed with high hyperopia at Tianjin Medical University Eye Hospital between 2011 and 2023. Inclusion criteria required an initial examination with cycloplegic refraction, bilateral spherical equivalent power (SE) ≥ +5.00D with a difference <1.00D, a minimum two-year follow-up, and at least three ocular biometric measurements. The annual axial growth rate evaluated emmetropization in highly hyperopic children. We applied Restricted Cubic Spline (RCS) models to explore potential nonlinear relationships between age and spherical equivalent, axial length, corneal curvature, and axial length-to-corneal curvature ratio. Additionally, Mixed-effects models were employed to investigate factors associated with changes in refractive error and axial length. RESULTS: The study enrolled 60 eligible subjects, with a median initial diagnosis age of 3.5 years (IQR, 2.8-4.9 years) and a median last visit age of 9.3 years (IQR, 8.1-10.8 years). The average follow-up duration was 5.7 years. RCS analysis revealed notable nonlinear changes in spherical equivalent power, axial length, and axial length-to-corneal curvature ratio, although corneal curvature displayed no statistically significant nonlinear trend. Factors affecting SE changes included the presence of strabismus, the use of cycloplegia, baseline SE, and age. Conversely, changes in axial length solely correlated with baseline axial length and age. CONCLUSION: Highly hyperopic preschool children undergoing early intervention display a marked emmetropization tendency, though most still remain moderately to highly hyperopic, with the progression of refractive changes showing non-uniform patterns with respect to age.

5.
J Cell Mol Med ; 28(4): e18143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333908

RESUMO

Nerve growth factor (NGF) and its receptor, tropomyosin receptor kinase A (TrkA), are known to play important roles in the immune and nervous system. However, the effects of NGF on the osteogenic differentiation of dental pulp stem cells (DPSCs) remain unclear. This study aimed to investigate the role of NGF on the osteogenic differentiation of DPSCs in vitro and the underlying mechanisms. DPSCs were cultured in osteogenic differentiation medium containing NGF (50 ng/mL) for 7 days. Then osteogenic-related genes and protein markers were analysed using qRT-PCR and Western blot, respectively. Furthermore, addition of NGF inhibitor and small interfering RNA (siRNA) transfection experiments were used to elucidate the molecular signalling pathway responsible for the process. NGF increased osteogenic differentiation of DPSCs significantly compared with DPSCs cultured in an osteogenic-inducing medium. The NGF inhibitor Ro 08-2750 (10 µM) and siRNA-mediated gene silencing of NGF receptor, TrkA and ERK signalling pathways inhibitor U0126 (10 µM) suppressed osteogenic-related genes and protein markers on DPSCs. Furthermore, our data revealed that NGF-upregulated osteogenic differentiation of DPSCs may be associated with the activation of MEK/ERK signalling pathways via TrkA. Collectively, NGF was capable of promoting osteogenic differentiation of DPSCs through MEK/ERK signalling pathways, which may enhance the DPSCs-mediated bone tissue regeneration.


Assuntos
Fator de Crescimento Neural , Osteogênese , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Polpa Dentária , Células-Tronco/metabolismo , Diferenciação Celular , Células Cultivadas , RNA Interferente Pequeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proliferação de Células
6.
Fitoterapia ; 174: 105867, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382891

RESUMO

The concept of multi-target-directed ligands offers fresh perspectives for the creation of brand-new Alzheimer's disease medications. To explore their potential as multi-targeted anti-Alzheimer's drugs, eighteen new bakuchiol derivatives were designed, synthesized, and evaluated. The structures of the new compounds were elucidated by IR, NMR, and HRMS. Eighteen compounds were assayed for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in vitro using Ellman's method. It was shown that most of the compounds inhibited AChE and BuChE to varying degrees, but the inhibitory effect on AChE was relatively strong, with fourteen compounds showing inhibition of >50% at the concentration of 200 µM. Among them, compound 3g (IC50 = 32.07 ± 2.00 µM) and compound 3n (IC50 = 34.78 ± 0.34 µM) showed potent AChE inhibitory activities. Molecular docking studies and molecular dynamics simulation showed that compound 3g interacts with key amino acids at the catalytically active site (CAS) and peripheral anionic site (PAS) of acetylcholinesterase and binds stably to acetylcholinesterase. On the other hand, compounds 3n and 3q significantly reduced the pro-inflammatory cytokines TNF-α and IL-6 released from LPS-induced RAW 264.7 macrophages. Compound 3n possessed both anti-acetylcholinesterase activity and anti-inflammatory properties. Therefore, an in-depth study of compound 3n is expected to be a multi-targeted anti-AD drug.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Fenóis , Humanos , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Desenho de Fármacos
7.
Histol Histopathol ; : 18716, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38353136

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be derived from a wide variety of human tissues and organs. They can differentiate into a variety of cell types, including osteoblasts, adipocytes, and chondrocytes, and thus show great potential in regenerative medicine. Traumatic brain injury (TBI) is an organic injury to brain tissue with a high rate of disability and death caused by an external impact or concussive force acting directly or indirectly on the head. The current treatment of TBI mainly includes symptomatic, pharmacological, and rehabilitation treatment. Although some efficacy has been achieved, the definitive recovery effect on neural tissue is still limited. Recent studies have shown that MSC therapies are more effective than traditional treatment strategies due to their strong multi-directional differentiation potential, self-renewal capacity, and low immunogenicity and homing properties, thus MSCs are considered to play an important role and are an ideal cell for the treatment of injurious diseases, including TBI. In this paper, we systematically reviewed the role and mechanisms of MSCs and MSC-derived exosomes in the treatment of TBI, thereby providing new insights into the clinical applications of MSCs and MSC-derived exosomes in the treatment of central nervous system disorders.

8.
J Agric Food Chem ; 72(9): 4518-4537, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386916

RESUMO

Asterric acid and its analogs belong to diphenyl ethers (DPEs) with multiple substitutions on A/B aromatic rings. This member of DPEs originates from the polyketide pathway and displays a wide range of biological effects. Though the structures of asterric acid analogs are not complex, there were only more than 50 asterric acid analogs found in nature from 1960 to 2023. In this review, the structures, bioactivities, and biosynthesis of asterric acid analogs are summarized. More importantly, the empirical rule about the shielding effect of B-ring on H-6 is suggested, and this provides a convenient and useful way to analyze the NMR spectral data of asterric acid analogs, based on which the chemical shift values of the A-ring in some asterric acid analogs are revised.


Assuntos
Biologia , Éteres Fenílicos , Éteres Fenílicos/química , Espectroscopia de Ressonância Magnética
9.
Small ; : e2311851, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38312088

RESUMO

Aqueous Zn-metal battery is considered as a promising energy-storage system. However, uncontrolled zinc dendrite growth is the main cause of short-circuit failure in aqueous Zn-based batteries. One of the most efficient and convenient strategies to alleviate this issue is to introduce appropriate zincophilic nucleation sites to guide zinc metal deposition and regulate crystal growth. Herein, this work proposes Bi2 O3 /Bi nanosheets anchored on the cell wall surface of the 3D porous conductive host as the Zn deposition sites to modulate Zn deposition behavior and hence inhibit the zinc dendrite growth. Density functional theory and experimental results demonstrate that Bi2 O3 has a super zinc binding energy and strong adsorption energy with zinc (002) plane, as a super-zincophilic nucleation site, which results in the deposition of zinc preferentially along the horizontal direction of (002) crystal plane, fundamentally avoids the formation of Zn dendrites. Benefiting from the synergistic effect Bi2 O3 /Bi zincophilic sites and 3D porous structure in the B-BOGC host, the electrochemical performance of the constructed Zn-based battery is significantly improved. As a result, the Zn anode cycles for 1500 cycles at 50 mA cm-2 and 1.0 mAh cm-2 . Meanwhile, the Zn@B-BOGC//MnO2 full cell can operate stably for 2000 cycles at 2.0 A g-1 .

10.
Plant J ; 118(2): 565-583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159243

RESUMO

The biogenesis and differentiation (B&D) of amyloplasts contributes to fruit flavor and color. Here, remodeling of starch granules, thylakoids and plastoglobules was observed during development and ripening in two kiwifruit (Actinidia spp.) cultivars - yellow-fleshed 'Hort16A' and green-fleshed 'Hayward'. A protocol was developed to purify starch-containing plastids with a high degree of intactness, and amyloplast B&D was studied using label-free-based quantitative proteomic analyses in both cultivars. Over 3000 amyloplast-localized proteins were identified, of which >98% were quantified and defined as the kfALP (kiwifruit amyloplast proteome). The kfALP data were validated by Tandem-Mass-Tag (TMT) labeled proteomics in 'Hort16A'. Analysis of the proteomic data across development and ripening revealed: 1) a conserved increase in the abundance of proteins participating in starch synthesis/degradation during both amyloplast B&D; 2) up-regulation of proteins for chlorophyll degradation and of plastoglobule-localized proteins associated with chloroplast breakdown and plastoglobule formation during amyloplast differentiation; 3) constitutive expression of proteins involved in ATP supply and protein import during amyloplast B&D. Interestingly, two different pathways of amyloplast B&D were observed in the two cultivars. In 'Hayward', significant increases in abundance of photosynthetic- and tetrapyrrole metabolism-related proteins were observed, but the opposite trend was observed in 'Hort16A'. In conclusion, analysis of the kfALP provides new insights into the potential mechanisms underlying amyloplast B&D with relevance to key fruit quality traits in contrasting kiwifruit cultivars.


Assuntos
Actinidia , Proteoma , Proteoma/metabolismo , Actinidia/genética , Actinidia/metabolismo , Proteômica/métodos , Frutas/metabolismo , Plastídeos/metabolismo , Amido/metabolismo
11.
Molecules ; 28(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067620

RESUMO

Dendrobium nobile Lindl., as an endangered medicinal plant within the genus Dendrobium, is widely distributed in southwestern China and has important ecological and economic value. There are a variety of metabolites with pharmacological activity in D. nobile. The alkaloids and polysaccharides contained within D. nobile are very important active components, which mainly have antiviral, anti-tumor, and immunity improvement effects. However, the changes in the compounds and functional genes of D. nobile induced by methyl jasmonate (MeJA) are not clearly understood. In this study, the metabolome and transcriptome of D. nobile were analyzed after exposure to MeJA. A total of 377 differential metabolites were obtained through data analysis, of which 15 were related to polysaccharide pathways and 35 were related to terpenoids and alkaloids pathways. Additionally, the transcriptome sequencing results identified 3256 differentially expressed genes that were discovered in 11 groups. Compared with the control group, 1346 unigenes were differentially expressed in the samples treated with MeJA for 14 days (TF14). Moreover, the expression levels of differentially expressed genes were also significant at different growth and development stages. According to GO and KEGG annotations, 189 and 99 candidate genes were identified as being involved in terpenoid biosynthesis and polysaccharide biosynthesis, respectively. In addition, the co-expression analysis indicated that 238 and 313 transcription factors (TFs) may contribute to the regulation of terpenoid and polysaccharide biosynthesis, respectively. Through a heat map analysis, fourteen terpenoid synthetase genes, twenty-three cytochrome P450 oxidase genes, eight methyltransferase genes, and six aminotransferase genes were identified that may be related to dendrobine biosynthesis. Among them, one sesquiterpene synthase gene was found to be highly expressed after the treatment with MeJA and was positively correlated with the content of dendrobine. This study provides important and valuable metabolomics and transcriptomic information for the further understanding of D. nobile at the metabolic and molecular levels and provides candidate genes and possible intermediate compounds for the dendrobine biosynthesis pathway, which lays a certain foundation for further research on and application of Dendrobium.


Assuntos
Alcaloides , Dendrobium , Transcriptoma , Dendrobium/genética , Dendrobium/metabolismo , Extratos Vegetais/metabolismo , Alcaloides/metabolismo , Terpenos/metabolismo , Metaboloma , Polissacarídeos/metabolismo
12.
Wei Sheng Yan Jiu ; 52(6): 907-911, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38115654

RESUMO

OBJECTIVE: Comparative analysis of two method for determining fat and analysis of fatty acid content in tea samples. METHODS: The content of freefatand total fat in tea was determined by Soxhlet extraction method and acid hydrolysis method, and the content of fatty acids were determined by gas chromatography. The composition and content of fatty acids in 21 tea samples from 5 regions were analyzed. RESULTS: The freefat content of tea determined by Soxhlet extraction method was significantly lower than that determined by acid hydrolysis method. The totalfat content in tea determined by acid hydrolysis method was consistent with the total amount of fatty acids determined by gas chromatography, and their content conformed to the logical relationshipsimultaneously. The totalfat content in tea ranged from 0.6 to 4.1 g/100 g, which in green tea, white tea, yellow tea, and black tea were 2.2, 1.8, 1.6 and 0.6 g/100 g, respectively. The content of free fat in tea was less than 58%, with 42%-80% of the fat existing in a bound form. The fatty acids in tea were mainly unsaturated fatty acids, accounting for 67.52%-99.03% of the total fatty acids. There were differences in the composition of fatty acids in different types of tea, with the proportion of unsaturated fatty acids in yellow tea accounting for 98.84% of the total fatty acids, which was significantly higher than that of green tea, white tea, and black tea. The fatty acids with high content in green tea(except Tang chi xiaolan tea, Bawangjian green tea and Liuxi yuye tea)were α-linoleic acid, linoleic acid, and palmitic acid. CONCLUSION: Theacid hydrolysis method is more suitable for the determination of fat in tea samples. The composition and content of fat and fatty acids in tea vary depending onfactors such as the type of tea and the degree of fermentation.


Assuntos
Ácidos Graxos Insaturados , Ácidos Graxos , Ácidos Graxos/análise , Ácidos Graxos Insaturados/análise , Chá/química , Ácidos Linoleicos
13.
Cancer Med ; 12(22): 20892-20905, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37902191

RESUMO

BACKGROUND: We aimed to demonstrate the regulatory effect of long non-coding RNA (lncRNA) ENAH-202 on oral squamous cell carcinoma (OSCC) development as well as its molecular mechanism. METHODS: We detected ENAH-202 expression in OSCC tissues and cell lines by quantitative real-time PCR (qPCR). The biological function of ENAH-202 was assessed in vitro and in vivo using CCK-8, colony formation assays, transwell assays, xenograft formation, and tail vein injection. The further molecular mechanism by which ENAH-202 promoted OSCC progression was identified using RNA pull-down, LS-MS/MS analysis, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP) assays. RESULTS: ENAH-202 was significantly upregulated in OSCC tissues and cells. ENAH-202 promoted OSCC cell proliferation, migration, and invasion in vitro and in vivo. The expression of enabled homolog (ENAH) and epithelial-to-mesenchymal transition (EMT)-related proteins was changed with the expression of ENAH-202. Moreover, ENAH-202 promoted the transcription of Vimentin (VIM) by binding with ZNF502, which can help ENAH-202 promote OSCC progression. CONCLUSIONS: ENAH-202 facilitated OSCC cell proliferation and metastasis by regulating ZNF502/VIM axis, which played an important role in OSCC progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , RNA Longo não Codificante , Vimentina , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , MicroRNAs/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , RNA Longo não Codificante/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Espectrometria de Massas em Tandem , Vimentina/genética
14.
Environ Res ; 238(Pt 2): 117155, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37775008

RESUMO

BACKGROUND: Living near and enjoying visually green landscapes is associated with better mental health, but evidence focusing on vulnerable populations (such as cancer survivors) is sparse. The purpose of this study was to explore the association between residential greenspace and anxiety and depressive symptoms among cancer survivors in Shanghai, China. METHODS: In total, 4195 cancer survivors participated in this study from the 2022 Shanghai Cancer Patient Needs Survey. The estimation of residential greenspaces was based on Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The presence and severity of depressive and anxiety symptoms were assessed by using the Patient Health Questionnaire-2 (PHQ-2) and Generalized Anxiety Disorder-2 (GAD-2). The relation between mental health and green space was assessed using the Generalized Additive Model (GAM) after controlling for relevant individual covariates and contextual characteristics. RESULTS: The prevalence of anxiety and depression in cancer survivors was 36.2% and 28.3% respectively. After multivariate adjustment, each increase in inter-quartile range (IQR) for NDVI in the 250 m buffer (NDVI-250m) was associated with a decrease in PHQ-2 score (△score (95%CI): 0.018 (-0.034, -0.002)) and GAD-2 score (△score (95%CI): 0.018 (-0.034, -0.002)), respectively. We observed that an increase in IQR for NDVI-250m was associated with a 3.3% (Odds ratio (OR) (95%CI):0.967 (0.943, 0.991)) reduction in anxiety symptoms. More pronounced greenspace-mental health effects were found among young adults (18-65 years) and participants living in suburban areas, compared to young people over 65 and those living in urban areas (P-interaction < 0.05). CONCLUSIONS: Higher levels of residential green space are associated with lower risk of depression and anxiety disorders. Our findings will fill the gap in the relationship between green space and mental health among cancer survivors in urban China, and provide new evidence for garden afforestation, community planning and policy-making. To better understand this association, more longitudinal studies are necessary to investigate the mechanisms involved.


Assuntos
Sobreviventes de Câncer , Neoplasias , Adulto Jovem , Humanos , Adolescente , Saúde Mental , Parques Recreativos , China , Estudos Longitudinais
15.
Glob Health Med ; 5(4): 208-215, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37655186

RESUMO

Cancer is currently a major public health issue faced by countries around the world. With the progress of medical science and technology, the survival rate of cancer patients has increased significantly and the survival time has been effectively prolonged. How to provide quality and efficient care for the increasingly large group of cancer survivors with limited medical resources will be a key concern in the field of global public health in the future. Compared to developed countries, China's theoretical research and practical experience in care for cancer survivors are relatively limited and cannot meet the multi-faceted and diverse care needs of cancer patients. Based on the existing models of care worldwide, the current work reviews care for cancer survivors in China, it proposes considerations and suggestions for the creation of models of cancer care with Chinese characteristics in terms of optimizing top-level system design, enhancing institutional mechanisms, accelerating human resource development, and enhancing self-management and social support for patients.

16.
J Agric Food Chem ; 71(37): 13612-13632, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37684097

RESUMO

Trichoderma, a genus with more than 400 species, has a long history of use as an industrial bioreactor, biofertilizer, and biocontrol agent. It is considered a significant source of secondary metabolites (SMs) that possess unique structural features and a wide range of bioactivities. In recent years, numerous secondary metabolites of Trichoderma, including terpenoids, polyketides, peptides, alkaloids, and steroids, have been identified. Most of these SMs displayed antimicrobial, cytotoxic, and antifungal effects. This review focuses on the structural diversity, biological activities, and structure-activity relationships (SARs) of the SMs isolated from Trichoderma covered from 2018 to 2022. This study provides insights into the exploration and utilization of bioactive compounds from Trichoderma species in the agriculture or pharmaceutical industry.


Assuntos
Trichoderma , Agricultura , Antifúngicos , Reatores Biológicos , Indústrias
17.
J Nat Prod ; 86(9): 2238-2245, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37646572

RESUMO

This review provides a critical analysis of shielding effects induced by an aromatic (indole) ring of small molecules mainly including three members of naturally occurring secondary metabolites asterric acid analogs, diketopiperazines (DKPs) possessing an aromatic or an indole ring, and rubrolides. Empirical rules about the shielding effects induced by an aromatic (indole) ring are classified, based on which some 1H NMR chemical shift values in the A-ring and structures of asterric acid analogs are revised, and the relative configurations of some DKPs possessing an indole ring are also assigned or revised. The empirical rules could provide an efficient and convenient method for NMR data analysis and configuration determination for the three members of small molecules mentioned above.


Assuntos
Análise de Dados , Éteres Fenílicos , Dicetopiperazinas , Indóis
18.
MedComm (2020) ; 4(4): e326, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37426677

RESUMO

Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.

20.
J Agric Food Chem ; 71(31): 11982-11992, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37523321

RESUMO

An integrated purification procedure through the LC-MS/MS-based molecular networking strategy combined with bioactive evaluation was first ushered for discovering bioactive ophiobolins from Bipolaris eleusines. Ophiobolins were mainly dispersed in five clusters, which were classified based on different ring systems and functional groups. Nine undescribed ophiobolins (1-6 and 9-11) and an undescribed natural product (8) along with two known analogs (7 and 12) were isolated in target. The undescribed structures were characterized by HR-ESI-MS, NMR spectra, and X-ray diffraction experiments. Compounds 3-12 exhibited strong phytotoxic effects on green foxtails by producing visible lesions, and compounds 1-10 and 12 displayed different levels of cytotoxic activities against cancer cell lines B16, Hep G2, and MCF-7, from which the possible structure-activity relationships were then suggested. The results have supported that bioactivity-guided molecular networking is an efficient strategy to expedite the discovery of undescribed bioactive natural products.


Assuntos
Sesterterpenos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Sesterterpenos/farmacologia , Sesterterpenos/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...